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Abstract 
 

In this article, we consider Lucas series for 𝑁 = 2, 5, 6 in numerical solutions of linear and nonlinear Volterra integral 

equations of the second kind. The series is used to transform the equation into a system of nonlinear algebraic equations, and the 

unknown parameters are determined. The application of this method has shown that the Lucas series is a powerful and active 

candidate that can be used to approximate the solution of linear and nonlinear Volterra integral equations of the second kind. The 

method gave a good performance, as can be seen from the four sample problems considered. The numerical results reveal 

computational efficiency of the method and it is also seen to be highly accurate and converge to the exact solution in some cases. 

Approximate and exact solutions are plotted to further confirm the accuracy of the method. 
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1. Introduction  
 

In recent years, mathematical modeling of real-life 

problems usually results in some form of functional equations, 

such as algebraic equations, differential equations, integral 

equations, and many others. The appearance of integral 

equations is common in many areas of the sciences and 

engineering. In mathematics, an integral equation is said to be 

of the Volterra type if the upper limit is a variable. These 

equations (Volterra type) are divided into two groups referred 

to as the first and the second kind (Atkinson, 1997; Delves & 

Mohamed, 1985; William & Teukolsky, 1990). These classes 

of equations have gained distinction in the literature on a 

variety of applications, in demography as Lotka’s integral 

equation, in studies on the risk of insolvency and on visco-

elastic materials, in actuarial science through the renewal 

equation, and in fluid mechanics to describe the flow behavior 

near finite-sized boundaries. In most cases it is not possible to 

obtain exact solutions using analytical methods. In such cases, 

 
we need approximate solutions, and with the introduction of 

high-speed computers in the past few decades we have seen 

substantial progress in the development of approximate 

solutions to such problems. In literature, there are different 

approaches and varieties of numerical and analytical methods 

that are used to solve Volterra integral equations of the second 

kind (Al-Bugami & Al-Juaid, 2017; Altürk, 2016; Bellour & 

Rawashdeh, 2010; Cecilia, 2014; Kreyszig, 1979; Mandal & 

Bhattacharya; 2007, 2008; Mahdy, Doaa, & Lotfy, 2022; 

Reinkenhof, 1977).  

Therefore, it is important to investigate approximate 

solutions of these equations. A good number of techniques have 

been proposed in the past, namely numerical solutions of VIE 

using Laguerre polynomials (Rahman, Islam, & Alam, 2012), 

Bernstein polynomials (Altürk, 2016; Bellour & Rawashdeh, 

2010; Cecilia, 2014), or Taylor series (Wang & Wang, 2014); 

method of operational matrices of piecewise constant 

orthogonal functions (Babolian & Shamloo, 2008), Runge-

Kutta method (RKM), and Block-by-Block method (Al-

Bugami & Al-Juaid, 2017), Adomian and Block-by-Block 

methods (EL-Kalla & AL-Bugami, 2011), two-step collocation 

(2-SC) method (Torabi & Shahmorad, 2019), multistep 

collocation  method  (Jingjun,  Teng,  &  Xu,  2019),  the  well-
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known Galerkin method using Laguerre and Hermite polynomials as trial functions (Rahman et al., 2012), Lucas polynomials for 

approximating solution of Cauchy integral equation (Mahdy & Mohamed, 2022), computing second-type mixed integral equations 

with singular kernels (Mahdy, et al., 2023) and (Kamoh, Ali, & Dang, 2022). The matrix approach method has been developed 

(Kamoh, Kumleng, & Sunday, 2020).  

Recently, a variety of specialized methods (Abeer, Abdou & Mahdy, 2023; Kamoh, et al., 2020, 2022; Khaled, et al., 

2021; Mahdy, Abdou & Mohamed, 2024; Mahdy, et al., 2023; Mahy, 2023; Rahman et al., 2012) have been reported in literature. 

These methods have generated impressive and accurate numerical results for the problems considered in examples or experiments. 

 

1.1 Lucas polynomial 
 

To define the Lucas polynomial, we need to first understand what Lucas numbers are. The Lucas numbers are a sequence 

of integers in which each number is the sum of its two immediately preceding numbers, similar to the Fibonacci sequence. The 

Lucas numbers are denoted by 𝐿(𝑛) and are defined as: 

 

𝐿(0)  =  2 

𝐿(1)  =  1, 

𝐿(𝑛)  =  𝐿(𝑛 − 1) +  𝐿(𝑛 − 2) 𝑓𝑜𝑟 𝑛 ≥  2 

The Lucas polynomials use the same recurrence with different starting values 

 

𝑙𝑛(𝑥) = {

2                                      𝑖𝑓 𝑛 = 0
𝑥                                       𝑖𝑓  𝑛 = 1

𝑥𝐿𝑛−1(𝑥) + 𝐿𝑛−2(𝑥)   𝑖𝑓 𝑛 ≥ 2
 

or 

𝑙𝑛(𝑥) = 2−𝑛(𝑥 − √𝑥2 + 4)
𝑛

(𝑥 + √𝑥2 + 4)
𝑛

 

The first few Lucas polynomials are given below.  

 

𝑙0(𝑥) = 2 

𝑙1(𝑥) = 𝑥 

𝑙2(𝑥) = 𝑥2 + 2 

𝑙3(𝑥) = 𝑥3 + 3𝑥 

𝑙4(𝑥) = 𝑥4 + 4𝑥2 + 2 

𝑙5(𝑥) = 𝑥5 + 5𝑥3 + 5 

𝑙6(𝑥) = 𝑥6 + 6𝑥4 + 9𝑥2 + 2 

The Binet and power form representations of the Lucas polynomials can be found in (Abd-Elhameed & Youssri, 2016, 

2017).  

 

1.2 The existence and uniqueness theorem (Volterra theorem) 
 

Some integral equations have solutions and some others have no solutions, or they can have an infinite number of 

solutions. The following theorems state the existence and uniqueness of solution for the Volterra integral equations of the second 

kind. 

 

Theorem 1.1 Assume that the kernel 𝐾(𝑥, 𝑡) of the linear Volterra integral equations of the second kind 

 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)
𝑥

0

𝑑𝑡, 𝑥 ∈ 𝐼 = [0, 𝑇], 

is continuous on 𝐷 ≔ {(𝑥, 𝑡): 0 ≤ 𝑡 ≤ 𝑥 ≤ 𝑇}. Then for any function 𝑓(𝑥) that is continuous on 𝐼 (i.e.,   𝑓 ∈ 𝐶(𝐼) ), the Volterra 

integral equation possesses a unique solution 𝑢 ∈ 𝐶(𝐼). This solution can be written in the form 

 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)
𝑥

0

𝑑𝑡,   𝑥 ∈ 𝐼 

for some 𝑅 ∈ 𝐶(𝐷). The function 𝑅 = 𝑅(𝑥, 𝑡) is called the resolving kernel of the given kernel 𝐾(𝑥, 𝑡), (Brunner, 2010).  

 

Theorem 1.2 If we define the integral operator 𝐾: 𝐶(𝐼) → 𝐶(𝐼) by 

 

(𝐾𝑓)(𝑥): = ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)
𝑥

0

𝑑𝑡,   𝑥 ∈ 𝐼 

then, the Volterra integral equation in operator form is given by 

 

𝑢 = 𝑓 + 𝑉𝑢   Or  (𝐼 − 𝑉)𝑢 = 𝑓 
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(where 𝐼 denotes the identity operator, and the classical Volterra operator 𝑉: 𝐶(𝐼) → 𝐶(𝐼) is defined by  (𝑉𝑢)(𝑥): =

∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)
𝑥

0
𝑑𝑡,   𝑥 ∈ 𝐼, with 𝐾 ∈ 𝐶(𝐷)), and we have the following relationship 

 
(𝐼 − 𝑉)𝑢 = 𝑓 ⇒ 𝑢 = (𝐼 + 𝐾)𝑓 

By Theorem 1.1 this implies that the inverse (𝐼 − 𝑉)−1 always exists, and hence (by uniqueness of 𝑅(𝑥, 𝑡)) (𝐼 − 𝑉)−1 =
𝐼 + 𝐾 , (Brunner, 2010). 

This paper is structured as follows. In Section 2, the considered class of equations is introduced and the technique is 

eloquently discussed. Section 3 deals with the illustration of the numerical method through some problems, and the outcomes are 

compared with other existing methods. Finally, in Section 4 some concluding remarks are discussed. 

 

2. Context and Method of Solution 
 

The purpose of this paper is to demonstrate recent results on the Volterra integral equation of the second kind (VIESK) 

of the form; 

𝑔(𝑥)𝑦(𝑥) = 𝑓(𝑥) + 𝜌 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎

, −∞ < 𝑎 ≤ 𝑥 ≤ 𝑏 < ∞     (1.0) 

where 𝜌 is real constant. The function 𝑓(𝑥) and the kernel 𝑘(𝑥, 𝑡) are known. The solution 𝑦(𝑥)  of (1.0) is to be sought for  𝑔(𝑥) =
1.  

In this article, we propose a polynomial based method similar to (Kamoh, et al., 2020) and collocation approach to 

numerically solve (1.0), demonstrating its desirable properties. The collocation method provides an approximation over the entire 

integration interval to the solution of the equation, which is revealed to be quite useful in a variable-step size implementation; 

indeed, it is easy to recover the missing past values when the step size is changed by evaluating the collocation polynomial. Other 

good properties of this approach are its high order of convergence, strong stability properties, and flexibility. As a matter of fact, 

if some information is known on the behavior of the exact solution, then it is possible to choose collocation functions in order to 

better follow such behavior and this gives rise to mixed collocation methods (Cardone, Conte, D’ambrosio, & Paternoster, 2018).  

The novelty of the present approach is, to the best of our knowledge, that no method similar to the proposed method has 

been discussed in any literature to date. It is our strong belief that many will find the proposed method appealing, and it is an 

improvement to existing methods for the numerical solution of Volterra integral equations of the second kind. 

The proposed technique to solve equation (1.0) is based on the finite Lucas series of the form 

 

𝑦𝑁(𝑥) = ∑ 𝑎𝑖𝑙𝑖(𝑥)𝑁
𝑖=0        (2.0) 

Here  𝑎𝑖,  𝑖 =  0, 1, . . . , 𝑁 are unknown coefficients and 𝑙𝑖(𝑥), 𝑖 =  0, 1, . . . , 𝑁;  are the Lucas polynomials (Lucas, 1878, 

Liu, 2013). 

Equation (1.0) with 𝑔(𝑥) = 1 = 𝜌  takes the form;  

 

 𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
        (3.0) 

We assume that (2.0) is an approximate solution of (3.0), where 𝑙𝑖(𝑥) is the Lucas polynomial of degree 𝑖 defined in 

equation (2.0) and 𝑎𝑖 ′𝑠  are the unknown parameters to be determined. Substituting (2.0) into (3.0) gives  

 

∑ 𝑎𝑖𝑙𝑖(𝑥)𝑁
𝑖=0 − ∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑙𝑖(𝑡)𝑁

𝑖=0 𝑑𝑡
𝑥

𝑎
= 𝑓(𝑥)                                         (4.0) 

Expanding the integral in (4.0), we get the result  

 

∑ 𝑎𝑖𝑙𝑖(𝑥)𝑁
𝑖=0 − (𝑎0 ∫ 𝑘(𝑥, 𝑡)𝑙0(𝑡)𝑑𝑡

𝑥

𝑎
+ ⋯ + 𝑎𝑁 ∫ 𝑘(𝑥, 𝑡)𝑙𝑛(𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓(𝑥)  (5.0) 

Evaluating (5.0) at the points  

 

𝑥 = 𝑥𝑖 =
𝑖

𝑁
, 𝑖 = 0,1, … , 𝑁,    𝑥𝜖[𝑎, 𝑥𝑁] 

gives an (𝑁 + 1) by (𝑁 + 1) system of linear equations, which can be solved (using Gaussian elimination) for 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑁 

and substituting the calculated values of  𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑁 into (2.0), so an approximate solution for (3.0) is obtained. 

 

3. Application of the Method 
 

In (Kamoh, et al., 2022), the researchers used a very simple and efficient Galerkin weighted residual method with Hermite 

polynomials as trial function to solve Volterra integral equations of the first kind, while (Zarnan, 2016) used trapezoidal rule to 

solve Volterra integral equations of the second kind. The present work suggests that the proposed method is comparatively simpler 

to apply than most existing methods. Four numerical examples are solved in order to further illustrate the simplicity and 

applicability of this method. These test problems were previously solved by (Al-Bugami & Al-Juaid, 2017; Majeed & Jabar, 2014; 

Zarnan, 2016). All calculations are performed with Lucas series for 𝑁 = 2, 5, 6 using Scientific Workplace 5.5 software. The 

detailed steps are shown below. 

 

https://sciprofiles.com/profile/429500
https://sciprofiles.com/profile/1787181
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Problem 3.1 Consider the non-linear Volterra integral equation of the second kind (Al-Bugami & Al-Juaid, 2017). 

 

𝑦(𝑥) = 𝑥 +
1

5
𝑥5 − ∫ 𝑡(𝑦(𝑡))

3
𝑑𝑡

𝑥

0

,   0 ≤ 𝑥 ≤ 1 

for which the exact solution is 𝑦(𝑥) = 𝑥. Applying the present technique with  𝑁 = 2, and collocating (5.0) at 𝑥𝑖 =
𝑖

2
, 𝑖 = 0,1,2 

and solving the resulting system of equations, we obtain 

 

[𝑎₀ = 0, 𝑎₁ = 1.0, 𝑎₂ = 0] 
Substituting these approximate values into  (2.0), we get the approximate solution to the problem as  

 

𝑦𝑁(𝑥) = 𝑥 

The approximate solution is the same as the exact solution showing the accuracy of the method. Numerical results by 

(Al-Bugami & Al-Juaid, 2017) for 𝑁 = 50 are compared with the present method for 𝑁 = 2 in Table 1 

 

Problem 3.2 Here we solve equation (3.0) with 𝑘(𝑥, 𝑡)  =  𝑒−(𝑥−𝑡) , 𝑓 (𝑥)  = 1 and the exact solution is  𝑦(𝑥)  =  𝑥 + 1. Applying 

the present technique with  𝑁 = 5, and collocating (5.0) at 𝑥𝑖 =
𝑖

5
, 𝑖 = 0,1,2, … ,5 and solving the resulting system of equations, 

we obtain 

[𝑎₀ =
1

2
, 𝑎₁ = 1, 𝑎₂ = 0, 𝑎₃ = 0, 𝑎₄ = 0, 𝑎₅ = 0]  

Substituting these values into  (2.0), we get an approximate solution to the problem  

 

𝑦𝑁(𝑥) = 𝑥 + 1 
The approximate solution is the same as the exact solution affirming further the accuracy of the present method. 

Numerical results by (Majeed & Jabar, 2014) for 𝑁 = 10 are compared with the present method with 𝑁 = 5 in Table 2. 

 

Problem 3.3 Consider the linear Volterra integral equation of the second kind solved by (Zarnan, 2016).  

 

𝑦(𝑥) − ∫ (𝑡 − 𝑥)𝑦(𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0

= 𝑥, 0 ≤  x ≤  1 

where  𝑘(𝑥, 𝑡)  = (𝑡 − 𝑥) and  𝑓(𝑥)  =  𝑥 with exact solution given by 𝑦(𝑥)  =  𝑠𝑖𝑛𝑥. Applying the present technique with  𝑁 = 6 

and collocating at 𝑥𝑖 =
𝑖

6
, 𝑖 = 0,1,2, … ,6 and solving for the unknown parameters from the resulting system of equations, we obtain 

 

[𝑎₀ = 4. 79765385676 × 10−3, 𝑎₁ = 1. 59162091428, 𝑎₂ = −7. 48542224102 × 10−3, 
𝑎3 = −0.212588646381, 𝑎4 = 3. 34903018189 × 10−3, 𝑎5 = 9. 22955565935 × 10−3 

𝑎₆ = −6. 61261797629 × 10−4] 
Substituting these values into  (2.0), we get the approximate solution  

 

𝑦𝑁(𝑥) = −6. 61261797629 × 10−4 𝑥⁶ + 9. 22955565935 × 10−3 𝑥⁵ − 6. 18540603889 × 10−4 𝑥⁴
− 0.166440868084 𝑥³ − 4. 06576921387 × 10−5 𝑥² + 1. 00000275343 𝑥 

The approximate results are compared to the exact results in Table 3, and the approximate solution is plotted against the 

exact solution to further confirm the accuracy of the present method in Figure 1.  

 

Problem 3.4 Consider the nonlinear Volterra integral equation solved by (Al-Bugami & Al-Juaid, 2017). 

 

𝑦(𝑥) = 𝑠𝑖𝑛𝑥 +
𝑥(1 − 𝑐𝑜𝑠2𝑥)

16
+

𝑥2(𝑥 − 𝑠𝑖𝑛2𝑥)

8
− ∫

𝑡𝑥

2
(𝑦(𝑡))

2
𝑑𝑡

𝑥

0

, 0 ≤ 𝑥 ≤ 1 

where  𝑘(𝑥, 𝑡)  =
𝑡𝑥

2
 and  𝑓(𝑥)  =  𝑠𝑖𝑛𝑥 +

𝑥(1−𝑐𝑜𝑠2𝑥)

16
+

𝑥2(𝑥−𝑠𝑖𝑛2𝑥)

8
 with exact solution given by 𝑦(𝑥)  =  𝑠𝑖𝑛𝑥. Applying the 

present technique with  𝑁 = 2 and collocating at 𝑥𝑖 =
𝑖

2
, 𝑖 = 0,1,2 and solving the resulting system of equations, we obtain  

 

[𝑎₀ = 0.232670254 801, 𝑎₁ = 1. 075039216 34, 𝑎₂ = −0.232670254 801] 
Substituting these approximate values into  (2.0), we obtain the approximate solution to the problem as  

 

𝑦𝑁(𝑥) =  1. 075039216 34𝑥 − 0.232670254 801 𝑥² 
 

The approximate solution by (Al-Bugami & Al-Juaid, 2017) for 𝑁 = 80 is compared with the present method with   𝑁 =
2 in Table 4. Also, the approximate and exact solutions were plotted to further confirm the accuracy of the present method, in 

Figure 2. 
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Figure 1. Comparing exact and approximate solutions to problem    

                  3.3 for N=6 
Figure 2. Comparing exact and approximate solutions to problem  

                  3.4 for N=2 

 
Table 1. Computed exact and approximate solutions and absolute errors for 𝑁 = 2 

 

x 
Exact 

solution 

Approx solution of 

proposed method 

Absolute error of 

proposed method 

Approx solution by (Al-Bugami & 

Al-Juaid, 2017) using Runge Kutta 

method for 𝑁 = 50 

Absolute error by (Al-Bugami & 

Al-Juaid, 2017) using Runge Kutta 

method 𝑁 = 50 

      

0.0 0.0 0.0 0.0 0.0 0.0 
0.1 0.1 0.1 0.0 0.0997267933 2.73 × 10−4 
0.2 0.2 0.2 0.0 0.1992790511 7.21 × 10−4 
0.3 0.3 0.3 0.0 0.2942789348 5.72 × 10−3 
0.4 0.4 0.4 0.0 0.3903370122 9.66 × 10−3 
0.5 0.5 0.5 0.0 0.4903037547 9.70 × 10−3 
0.6 0.6 0.6 0.0 0.5703260241 2.97 × 10−2 
0.7 0.7 0.7 0.0 0.6615191696 3.85 × 10−2 
0.8 0.8 0.8 0.0 0.7396378531 6.04 × 10−2 
0.9 0.9 0.9 0.0 0.8344427662 6.56 × 10−2 
1.0 1.0 1.0 0.0 0.9055801198 9.44 × 10−2 

      

 

Table 2. Computed exact and approximate solutions and absolute errors for 𝑁 = 5 

 

x Exact solution 
Approximate solution of proposed 

method for 𝑁 = 5 

Absolute error of proposed 

method for 𝑁 = 5 

Absolute error by (Majeed & Jabar, 2014) 

for 𝑁 = 10 

     

0.0 1.0 1.0 0.0 0.0 

0.2 1.2 1.2 0.0 1.5019 × 10−10 
0.4 1.4 1.4 0.0 3.0462 × 10−10 
0.6 1.6 1.6 0.0 4.6328 × 10−10 
0.8 1.8 1.8 0.0 6.2616 × 10−10 
1.0 2.0 2.0 0.0 7.9328 × 10−10 

     

 

Table 3. Computed exact and approximate solutions and absolute errors for 𝑁 = 6 
 

x Exact solution 
Approximate solution of proposed 

method for 𝑁 = 6 

Absolute error of proposed  

method for 𝑁 = 6 

Absolute error by (Zarma, 2016) 

for 𝑁 = 10 

     

0.0 0.0 0.0 0.0 0.0 

0.1 0.0998334166468 0.0998334166468 4.10 × 10−8 1.67 × 10−4 
0.2  0.198669330795  0.198669330795 1.19 × 10−8 3.31 × 10−4 
0.3 0.295520206661 0.295520206661 7.68 × 10−9 4.90 × 10−4 
0.4 0.389418342309 0.389418342309 5.76 × 10−9 6.42 × 10−4 
0.5 0.479425538604 0.479425538608 2.21 × 10−9 7.84 × 10−4 
0.6 0.564642473395 0.564642473429 1.01 × 10−8 9.14 × 10−4 
0.7 0.644217687238 0.644217687453 3.17 × 10−9 1.03 × 10−3 
0.8 0.717356090900 0.717356091939 7.22 × 10−9 1.13 × 10−3 
0.9 0.783326909627 0.783326913749 4.29 × 10−8 1.21 × 10−3 
1.0 0.841470984808 0.841470998816 3.89 × 10−9 1.28 × 10−3 
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Table 4. Computed exact and approximate solutions and absolute errors for 𝑁 = 2 
 

x Exact solution 

Approx solution of 

proposed method 

𝑁 = 2 

Absolute error of 

proposed method 

𝑁 = 2 

Approx solution by (Al-

Bugami1 & Al-Juaid, 2017) 

using Runge Kutta method 

for 𝑁 = 80 

Absolute error by (Al-

Bugami & Al-Juaid, 2017) 

using Runge Kutta method 

for 𝑁 = 80 

      

0.000 0.0 0.0 0.0 0.0 0.0 

0.125 0.1246747334 0.130744429 311 6.07 × 10−3 0.1246835292 8.80 × 10−6 
0.250 0.2474039593 0.254217913 160 6. 81 × 10−3 0.2476985837 2.95 × 10−4 
0.375 0.3662725291 0.370420451 546 4. 15 × 10−3 0.3676282777 1.36 × 10−3 
0.500 0.4794255385 0.479352044 470 7. 35 × 10−5 0.4830800698 3.65 × 10−3 

0.625 0.5850972724 0.581012691 931 4. 08× 10−3 0.5926912852 7.59 × 10−3 
0.750 0.6816387600 0.675402393 929 6. 24 × 10−3 0.6951347139 1.35 × 10−2 
0.875 0.7675434022 0.762521150 465 5. 02 × 10−3 0.7891248129 2.16 × 10−2 
1.000 0.8414709848 0.842368961 539 8.98 × 10−4 0.8734243449 3.20 × 10−2 

      

 

5. Conclusions and Discussion 
 

The advantage of the present work is that the 

proposed method is comparatively simpler to apply than most 

existing methods, whereas the numerical results and graphical 

illustrations depict the accuracy and superiority of the present 

method. The main attraction of the present method is displayed 

by the comparative study. The superior results for different 

input values testify to novelty of the present work. The 

applications of this method have shown that the Lucas series is 

a powerful and active candidate for approximating solutions to 

linear and nonlinear Volterra integral equations of the second 

kind. The method gave a good approximate solution in the four 

sample problems considered and the numerical results revealed 

that the method is computationally efficient. Tables 1, 2, 3 and 

4 present the absolute errors, whereas the plots in Figures 1 and 

2 confirm that as the order of the Lucas series increases, the 

approximate solution converges to the exact solution. The idea 

presented in this work suggests the possibility of replicating 

similar arguments applied to integro-differential equations of 

the Fredholm or Volterra types. Work is currently ongoing in 

this regard. 
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